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Multisolitons on vortex filaments: the origin of axial tangling
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Abstract

The results of experimental and theoretical study of two-dimensional vortex filament tangling, appearing in laser–

matter interactions on nanosecond time scale, are presented. A set of parallel vortex filaments shows various

kinds of axial tangling as a consequence of excitation of multisolitons on filaments. It was shown that few basic

types of the soliton combinations, either of ðþÞ or ð�Þ wave vector, or both, give rise of tangling of various

degrees of topological complexity. Some of the ‘‘basic elements’’ of the filament organization, which repeat

in the tangled structure, were obtained analytically by the Hirota method. The hierarchy in topological complexity

of axial tangling of filaments originates from random shock waves (which generate solitons with alternating

polarity), while random distribution of the multisoliton velocities causes various cases of their collision and spatial

organization.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Generation of vortex filaments and the onset of their tangling is a very intriguing physical process, and important for

understanding of behavior (and of properties) of the so-called ‘‘vortex matter’’ (Crabtree and Nelson, 1997) in many

systems like fluids, superfluids (Schwartz, 1998, 1985) in magnetic (geomagnetic) fluids (Jeanloz and Romanowicz,

1997), superconductors (Sch .onenberger et al., 1996; Kolton and Dominguez, 1999), as well as in astrophysical systems

(Ricca and Berger, 1996; Geller and Huchra, 1989; Norman, 1996. It was demonstrated that vortex filaments can be

formed also in laser–matter interaction (LMI) on short time scale (Lugomer and Maksimovi!c, 1997; Lugomer, 1999).

We assume that liquid metal generated in LMI at time scale t ¼ 10 ns; behaves as ideal fluid during the first half of the

laser pulse. In this time interval, the nonlinear and nonequilibrium processes take place, the result of which may be

various kinds of self-organization (SO), among them, the formation of vortex filaments. Their spontaneous formation

and their self-organization by various types of braiding was described by Lugomer (1999). The dissipative effects are,

therefore, neglected in this period of the laser pulse. First, the maximum of the pulse intensity occurred, the temperature

falls down and the viscosity increases in the second half of the pulse. The SO structures of vortex filaments formed in

LMI with metal targets, in the first half of the laser pulse, stay frozen after pulse termination because of ultrafast

cooling, thus enabling a posteriori analysis. Then, the dissipation, which sets in, occurs through vortex filament core

spreading, through the change of their cross section from circular into elliptic one, and through their interaction with

the background fluid. It was observed that braids of various complexity levels formed inside the laser spot give rise to

filament tangling which is dominantly of the axial type. However, local transition to random tangling was also

observed.

The tangling process occurs by: (i) the braiding of close filament bundles separated by distance Bs (filament core

size) (Lugomer, 1999), by reconnection of close filaments and (ii) by generation of various types of solitons (loops,
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kinks—left and right, etc.) on distant filaments (separated by distance bs)—where braiding process is excluded. This

paper presents the results of experimental and theoretical studies of the transition of vortex filaments into axially

tangled structures (the filaments keep their parallelism), by the generation of various types of solitons (loops and kinks)

with random velocity distribution.

2. Experimental results

Axial (and locally random) tangling of vortex filaments was generated by XeCl excimer laser (l ¼ 308 nm; t ¼ 16 ns)

on Cr-coated steel surface after N ¼ 13 pulses. The experimental details are given in Lugomer (1999). Tangling

of vortex filaments in LMI is caused by the shock waves traversing the sample in various directions because of

reflection from the sample walls (the sample is small B1� 1 cm so that fast shock waves return in the interaction

space without significant damping). It is also caused by the oscillations (or by turbulence) of the background fluid in

which the filaments (as separate entities) are immersed. Perturbation of filaments starts by their bending (in various

directions) as well as by formation of loops. In some cases only a few loops, while in others a large series of loops is

seen. They travel along the filament by simple sliding. In addition, there are filaments showing left and right kinks, of

very complex type of tangling (the labyrinth type). In some cases, the kinks are small so that the filament does not touch

the neighbor filament; in other cases the kinks are large, and the filament touch its distant neighbor what leads to their

reconnection.

The three representative groups of the filament SO in LMI with different characteristics (geometrical and topological)

are shown in Fig. 1A–C. Considering the SO of filaments in these micrographs, one can see that some ‘‘basic elements’’

of organization repeat along the filament(s). Such basic elements are the series of loops (i), combinations

of left and right loops (ii), of the left and right kinks (iii) or all these in combination (iv), giving rise to the axial

tangling of filaments. From these micrographs we shall select and consider four different cases of tangling of vortex

filaments. Fig. 2(i). shows vortex filaments each with a series of loops or a set of two-dimensional (2-D) solitons. These

solitons have almost equidistant position (multisoliton system), representing a one-dimensional (1-D) soliton lattice.

Fig. 3(i). shows two solitons (the left and the right loop) with corresponding wave vectors k�
1 and kþ

2 ; which travel in the

same direction. If v2 > v1 the second soliton will collide with the first slower one from behind, and pass through it

(Langer and Perline, 1994). Corresponding reconstruction is given in Fig. 3(ii). Fig. 4. shows two solitons (in the form

of kinks) with the wave vectors kþ
1 and k�

2 (which travel in the same direction). In Fig. 4(i), the two different kinks can

be formed by two (or more) alternating shocks from the left and right sides of the filament. Corresponding

reconstruction is given in Fig. 4(ii). Fig. 5(a). shows a more complex filament organization of the ‘‘labyrinth type’’.

Unfortunately, details of tangling are not quite clear even after numerical filtration. Approximate reconstruction of this

tangling is given in stages (Fig. 5(b)). It starts with (i) two loops (basic configuration) on 2-D lattice, then (ii) continues

with the formation of left and right loops on both sides of the filament, and (iii) eventually finishes with local

reconnection. Topological transformation of tangled structure clearly shows two pairs of soliton loops of ðþÞ and ð�Þ
wave vectors (iv).

In the following, we shall reconstruct some of these configurations with a filament (planar curve), which evolve in 2-D

space according to integrable evolution equations (Nakayama et al., 1992). The curve is determined by the curvature,

which is the solution of the modified Korteweg–de Vries (mKdV) equation. The one- and two-soliton solution for the

curvature are obtained analytically by using the Hirota method.

3. Model

First, we assume that the motion of isolated vortex filament in an unbounded, incompressible and inviscid fluid

is due to its own induction. The induced velocity is given by the Biot–Savart integral (Betchov, 1965). Localized

induction equation (LIE) is an approximation for the Biot–Savart equation when the radius of curvature is much

larger than the radius of the vortex core (Betchov, 1965). LIE describes asymptotic motion of the very thin isolated

vortex filament with same curvature in perfect fluid (Betchov, 1965; Hasimoto, 1971; Hama and Nutan, 1961;

Ricca, 1996):

rt ¼ kb; ð1Þ

where r is the radius vector, k is a curvature and b is the unit binormal vector. As long as the interaction between far

distant portions along the filament is neglected, the approximation seems to be valid (Hasimoto, 1971).
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Second, we substitute vortex filament by the mathematical curve, the motion of which in space is described by

the Frenet–Seret equations, i.e. the curve is completely described by the curvature and torsion. Hasimoto introduced the

transformation (Hasimoto, 1971) c ¼ kexp i
R s t ds

� �
; where t is the torsion. In three-dimensional (3-D) space,

Fig. 1. Tangled structures of vortex filaments generated by XeCl excimer laser (t ¼ 16 ns; l ¼ 308 nm) on Cr-coated steal surface.

Three representative groups of axially tangled filaments follow the increasing order of topological complexity from (A) to (B) and to

(C). M � :

A. Maksimovi!c et al. / Journal of Fluids and Structures 17 (2003) 317–330 319



the Frenet–Seret equations and LIE can be combined with the Hasimoto transformation to yield a nonlinear

Schr .odinger equation:

iCt þCss þ 1
2
jCj2C ¼ 0: ð2Þ

The curve is completely described by the Hasimoto transformation, C: As in the case of the ideal fluid flow from

which LIE is derived, it can be described as a Hamiltonian evolution equation which belong to an infinite

hierarchy of commuting evolution equations, the so-called localized induction hierarchy (LIH) (Langer and Perline,

1994).

In two dimensions, we use planar filament (PF) equation as a evolution equation on planar curve (Nakayama et al.,

1992; Langer and Perline, 1994):

rt ¼ �k0n� 1
2
k2t; ð3Þ

where n is the normal and t the tangent vector. The coordinates of the filament can be obtained by integrating the

tangent vector. The PF equation is a member of LIH generated by using a recursive operator on LIE. The PF is an

integrable system (Langer and Perline, 1994), which is related to the nonlinear evolution equation solved by the inverse

scattering method (Nakayama et al., 1992). The Frenet–Seret equation in two dimensions.

t0 ¼ kn; n0 ¼ �kt; ð4Þ

Fig. 2. (i) A series of 2-D solitons on filaments selected from Fig. 1A. (ii) Its reconstruction indicates the formation of 1-D soliton

lattice. MB3800� :

Fig. 3. (i) A segment of tangled filaments selected from Fig. 1B. (ii) Its reconstruction indicates the collision of two (loop) solitons of

ðþÞ and ð�Þ wave vectors. MB3800� :
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is the connection between the PF and mKdV equation for the curvature (as explained later). It was shown that most

solutions do not represent the motion of the closed curve (Nakayama et al., 1992). It was shown in Goldstein and

Petrich (1992) that PF equation (3) can be interpreted physically as localized induction equation for boundary of vortex

patch for ideal fluid flow in two dimensions.

The filament obtained from LIE in 3-D space becomes a planar curve if torsion vanishes. Then, one soliton solution is

equal up to some constant to the one soliton solution obtained from PF equation (compare solutions in Betchov (1965);

Hasimoto, (1971); Lugomer and Maksimovi!c, (1997)).

The filament length in this model is preserved, or in other words, the metric is constant. For simplicity, we use the

normalized value of the metric:

g ¼ r0 	 r0 ¼ 1: ð5Þ

The compatibility condition requires that mixed partial derivatives of the radius vector must be equal (Nakayama et al.,

1992): rst ¼ rts: The compatibility condition applied to Eq. (3) and first of the Frenet–Seret equations (4) yield the

evolution equation for the tangent vector:

tt ¼ � k00 þ 1
2
k3

� �
n: ð6Þ

The compatibility condition of the tangent vector determines the integrable differential equation for the curvature.

The curvature of the planar curve is a solution of the mKdV equation (Goldstein and Petrich, 1992; Nakayama

et al., 1992):

kt þ k000 þ 3
2
k0k2 ¼ 0: ð7Þ

We assume the same boundary condition k-0 as s-7N as in Lugomer and Maksimovi!c (1997) and Hasimoto (1971)

and find the soliton solution. To obtain multisoliton solution we use the so-called ‘‘Hirota method’’ (Hirota, 1971;

Hietarnita, 1997). The drawback of the Hirota’s method is that it requires many algebra and calculus operations. The

solution can be constructed with the aid of the symbolic programs based on the Hirota method (Hereman and Zhuang,

1992,1995; Hereman, 1992).

Using the transformation

k ¼
2

i
log

F

G

� �
s

; ð8Þ

where F ¼ f þ ig i G ¼ f � ig; one can transform the mKdV equation (7) into the bilinear form

P1ðDx;DtÞðF .GÞ ¼ ðDt þ D3
xÞðF .GÞ ¼ 0;

P2ðDx;DtÞðF .GÞ ¼D2
xðF .GÞ ¼ 0: ð9Þ

Operators Dx;Dt are defined by the following relation:

Dm
x Dn

t ðf . gÞ

¼
@

@x
�

@

@x0

� �m @

@t
�

@

@t0

� �n

f ðx; tÞ gðx0; t0Þ
����
x0¼x;t0¼t

; ð10Þ

Fig. 4. (i) A segment of tangled filaments selected from Fig. 1B. (ii) Its reconstruction indicates the collision of two (kink) solitons of

ðþÞ and ð�Þ wave vectors. MB3800� :

A. Maksimovi!c et al. / Journal of Fluids and Structures 17 (2003) 317–330 321



where n;m are nonnegative integers (Hereman and Zhuang, 1992). P must be considered as a polynomial in its

arguments. We look for a formal series solution for the unknown functions Fi;Gi (i ¼ 1; 2; 3;y):

F ¼ 1þ eF1 þ e2F2 þ?;

G ¼ 1þ eG1 þ e2G2 þ?; ð11Þ

Fig. 5. (A) A segment of tangled filaments selected from Fig. 1C. (B) Its reconstruction indicates the collision of two-soliton trains of

ðþÞ and ð�Þ wave vectors. Reconstruction given in segments from (i) to (iv), indicates the time evolution; see text. MB3800� :
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where Fi ¼ fi þ igi; Gi ¼ fi � igi and e is a bookkeeping parameter (Hereman and Zhuang, 1992). Substituting Eq. (11)

into bilinear form of the mKdV equation (9), and equating parts with same powers of e; yields

e0 : Bð1 	 1Þ ¼ 0; ð12Þ

e1 : Bððf1 	 1þ 1 	 f1Þ þ iðg1 	 1� 1 	 g1ÞÞ ¼ 0; ð13Þ

e2 : Bððf2 þ 1 	 f2Þ þ iðg2 	 1� 1 	 g2Þ

þ ðf1 	 f1 þ g1 	 g1Þ þ iðg1 	 f1 � f1 	 g1ÞÞ ¼ 0: ð14Þ

The operator B abbreviates the bilinear operator P1 or P2:
The tangent t and normal n vectors can be expressed in terms of the angle Z; by using the following relations

(Goldstein and Petrich, 1992):

t ¼ eiZ ¼ ðF=GÞ2; n ¼ �ieiZ; ð15Þ

where Z ¼
R
kds ¼ ð2=iÞlogðF=GÞ:

Integral of the tangent vector is a radius vector. Using Eq. (15), one can calculate the analytical or numerical solution

of the differential equation of the first order in symbolic programs such as Mathematica.

3.1. One-soliton solution

The simplest traveling wave solution of the mKdV equation is the one-soliton solution generated from

F ¼ 1þ iey; G ¼ 1� iey; ð16Þ

where y ¼ ks � ot; k and o are constants. Eq. (12) is satisfied trivially, while Eq. (13) determines a dispersion law

o ¼ k3: From Eq. (8) one can obtain the curvature of the loop

k ¼
2 k eo tþk s

e2 o t þ e2 k s
¼ 2 k sechy;

which is the same result as in Lugomer and Maksimovi!c (1997).

The radius vector of the curve is obtained by integration of the tangent vector (15). The coordinates are given as real

and imaginary parts of the radius vector of the loop

xðs; tÞ ¼ s �
2

k
tanh yþ C1; yðs; tÞ ¼

2

k
sech yþ C2; ð17Þ

where C1 and C2 are constants of integration. When the arc length s is equal to zero, we set the x and y coordinates to

zero:

xðs; tÞ ¼ s �
2

k
ðtanhot þ tanh yÞ;

yðs; tÞ ¼ �
2

k
ðsechot � sech yÞ: ð18Þ

The calculated solution for a fixed time is equal to the solution in Lugomer and Maksimovi!c (1997) up

to some constant. This solution represents the mirror image of the one calculated in Lugomer and

Maksimovi!c (1997), in which we used the so-called dual of the tangent vector (Goldstein and Petrich, 1992)

tn ¼ �i ey:
The soliton (loop) on vortex filament propagates from the left to the right with increasing time. The loop size

of the soliton decreases as the value of the wave vector increases. A smaller loop travels faster than a larger loop.

The path that the loop (maximum of the curve in the fixed time) wipes out has the form of the mirror image of

the 2-D soliton curve. The mirror image is obtained by inserting a negative value of the wave vector, because

xð�kÞ ¼ xðkÞ; yð�kÞ ¼ �yðkÞ: The coordinates of the maximum were obtained from the coordinates by inserting

time for which y is equal to zero, t ¼ s=k2: The curve that was generated by the maximum is equal to the image

curve at t ¼ 0:
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3.2. Two-soliton solution

The two-soliton solution is generated from

F ¼ 1þ iey1 þ iey2 � a1;2e
y1þy2 ; ð19Þ

G ¼ 1� iey1 � iey2 � a1;2e
y1þy2 ; ð20Þ

where yi ¼ kis � oit (i ¼ 1; 2). As in the one-soliton solution, Eq. (13) determines a dispersion law oi ¼ k3
i : The

constant a1;2 ¼ ðk1 � k2Þ
2=ðk1 þ k2Þ

2 was calculated from Eq. (14). For the two-soliton solution of the mKdV equation,

one finds

k ¼

�4 i
ey1þy2 i ey1 þ i ey2

� �
k1 � k2ð Þ2

k1 þ k2
þ i ey1 k1 þ ey2 k2

� �
1�

ey1þy2 k1 � k2ð Þ2

k1 þ k2ð Þ2

� � !

ey1 þ ey2ð Þ2þ 1�
ey1þy2 k1 � k2ð Þ2

ðk1 þ k2Þ
2

� �2
: ð21Þ

Integrating the tangent vector (15) in the Mathematica program, we obtain the radius vector of the curve

r ¼ �
4 i ek3

2
t k1 þ 4 i ek3

1
t k2 � 4 ek3

1
tþk3

2
t k1 þ k2ð Þ

k1 k2
k1 � k2

k1 þ k2

� �2

þi ek3
1

t þ i ek3
2

t � ek3
1 t þ k3

2 t

 !

þ
k1k2s

k1 � k2

k1 þ k2

� �2

þik2 4þ k1sð Þe�y1 þ ik1 4þ k2sð Þe�y2 � e�y1�y2 4k2 þ k1 4þ k2sð Þð Þ

k1k2
k1 � k2

k1 þ k2

� �2

þie�y1 � e�y1�y2 þ ie�y2

 ! ð22Þ

Coordinates of the curve are real and imaginary parts of the previous equation. If the values of both wave vectors are

equal to k; they can be expressed in somewhat simpler form

x ¼ s þ
32

3k

1

�5þ 3tanh k3tð Þ
þ

1

5þ 3tanh ks � k3tð Þ

� �
;

y ¼
8

k

1

�5coshðk3tÞ þ 3sinhðk3tÞ

�

þ
1

5coshðks � k3tÞ þ 3sinhðks � k3tÞ

�
: ð23Þ

The solution is of the same form as the one-soliton solution; it is only delayed for approximately half a loop with respect

to the one-soliton solution (not shown).

The two-soliton solution of mKdV equation (i.e. the curvature, k) describes the interaction of two solitary waves.

The distribution of intensity among both solitons can change during the collision (Radhakrishnan et al., 1997), but the

total intensity remains constant. Larger solitary waves have greater speed, because the speed is proportional to the

square of its amplitude (i.e. the phase velocity is equal to the square of its wave vector). The larger wave overtakes the

smaller one and after fully nonlinear interaction the solitary waves re-emerge, retaining the same speed and form

(Fordy, 1994). Only reminiscent of the interaction is the phase shift which represents the displacement of their centers.

That is unlike from most dispersive equations which scatter solitary waves inelastically and dissipate their energy into

radiation.

The ordinate of the soliton on vortex filament is inversely proportional to the wave vector, i.e. the larger the

curvature the smaller and faster are the solitons. The collision of two solitons is elastic, since they emerge after

collision with the unchanged speed and size. In Fig. 6, we show propagation of two solitons on the vortex

filament for the wave vectors k1 ¼ 3 and k2 ¼ 1: Two solitons are initially separated and travel from the left to

the right. After a while, smaller and faster soliton catches up the larger one near the origin of the coordinate

system. One can observe (Fig. 6) that smaller soliton travels on the loop of the larger soliton. The smaller loop
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Fig. 6. Two-soliton solution for k1 ¼ 3; k2 ¼ 1: (A) t ¼ �0:35; (B) t ¼ �0:25; (C) t ¼ �0:15; (D) t ¼ �0:05; (E) t ¼ 0:05; (F) t ¼ 0:15;
(G) t ¼ 0:25; (H) t ¼ 0:35:
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inside the larger can be distinguished since there is significant difference in the intensity of two solitons. The

contour of the curvature shows the shift of the trajectory only for the soliton with a larger wave vector, i.e. for the

smaller loop.

If the values of two wave vectors are much closer, for example k1 ¼ 2 and k2 ¼ 3; the smaller loop travels to

the right faster than the larger soliton (see Fig. 7). Since the difference in their intensity is not as great as in the previous

case, the smaller soliton does not travel along the loop of the larger one. When smaller and faster soliton catches up the

larger one (near the origin of the coordinate system), there is a soliton exchange. The two components redistribute from

the larger to the smaller one, while they are moving together in a loop around the origin of the coordinates. After the

loop is completed, the smaller one is on the right side and continues to go away with the same speed as before the

collision.

If one of the wave vectors is negative, then one of the loops is inverted with respect to the abscissa axis. Exchanging

the signs of two wave vectors we can flip two loops around the abscissa. In Figs. 8 and 9, we show the propagation of

two solitons on the vortex filament for two different sets of the wave vector values. The situation is the same as in the

first case where the wave vectors are different (enough), so that one can distinguish between two solitons when they

overlap. The smaller soliton again travels on the loop of the larger one.
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Fig. 7. Two-soliton solution for k1 ¼ 3; k2 ¼ 2: (A) t ¼ �0:1; (B) t ¼ �0:02; (C) t ¼ 0:06; (D) t ¼ 0:08; (E) t ¼ 0:14; (F) t ¼ 0:22:
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Fig. 9. Two-soliton solution for k1 ¼ 3; k2 ¼ �2: (A) t ¼ �0:2; (B) t ¼ 0:12; (C) t ¼ 0:2; (D) t ¼ 0:28; (E) t ¼ 0:36; (F) t ¼ 0:44; (G)

t ¼ 0:52; (H) t ¼ 0:76:
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4. Conclusion

The experimental study of tangling of vortex filaments in laser–matter interactions and theoretical study, based

on the analytical solutions of the filament dynamics, have shown that axial tangling of filaments occurs by generation

of multisolitons of various types (loops, kinks, etc.) of positive and negative wave vector in sequences. Such a

situation caused by the shock waves associated with a series of laser pulses, leads to various kinds of tangling with

different levels of topological complexity. Topological transformation of tangled segments reveal that their ‘‘basic

elements’’ are common to (almost) all observed tanglings. Approximated by a combination of 2-D solitons which

collide from behind, they have been reconstructed by the analytical solution for the radius vector (Eq. (22) of the planar

curve. The curvature of the curve is found by the Hirota method. Although the exact agreement between observed (real)

tangled structures and those obtained mathematically cannot be expected because of complexity of the real situation in

the experiment, the similarity is really impressive. These studies indicate that 2-D solitons with combined wave vectors

kþ
1 ; k

�
2 ;y; kðþÞ;ð�Þ

n ;y; which travel in the same direction with different speed will collide and cause the tangling of a

filament. The most elementary case of tangling represents a series of 2-D solitons (loops), which move with

(approximately) the same velocity in the same direction (forming a 1-D soliton lattice). Since there is no collision from

behind, they travel as a soliton train.

A complex case occurs when two solitons of the same polarity of the wave vector (either þ or �) collide from

behind. A more complex case occurs when two solitons of different polarity collide from behind. Finally, the most

complex case observed occurs when a series of solitons with alternating polarity collide, leading to the ‘‘labyrinth’’ type

of tangling. It follows that labyrinth tangling is a consequence of random shock waves (which generate the alternating

polarity of solitons) and, in addition, of random distribution of velocity of the solitons on filaments. The above

classification of the observed cases elucidates the origin of hierarchy in topological complexity of the axial tangling

filaments in LMI.
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